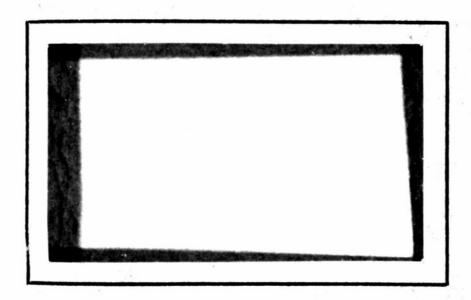
Armed Services Technical Information Agency


Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by DOCUMENT SERVICE CENTER

CONFIDENTIAL

NOTE OF THE OCEANOGRAPHIC INSTITUTION OF SELECTION OF SEL

WOODS HOLE, MASSACHUSETTS

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts

In citing this manuscript in a bibliography, the reference should be followed by the phrase: UNPUBLISHED MANUSCRIPT

Reference No. 54-42

Bottom Sediments and Foraminifera

from Labrador

BLUE DOLPHIN - 1951 and 1952

bу

W. D. Athearn

Technical Report
Submitted to Geophysics Branch, Office of Naval Research
Under Contract N6onr-27701 (NR-083-004)

June 1954

APPROVED FOR DISTRIBUTION

Director

Table of Contents

														Page
					<u></u>				•	•		•	•	1
Abstract	•	•	•	•	•					_	•		•	1
Introduct	ion	•	•	•	•	•	•	•	•		- 101 <u>-</u> 2.0			2
Bottom Se	dime	nts	3	•	•	•	•	•	٠	•	•	•	•	_
						_			•	•	•	•	•	4
Foraminif	era	•	•	•	•	•	•							10
Reference	8	٠	•	•	•	•	•	•	•	•	•	•	•	
	т						į		•	•	•	•	•	11
Appendix	1	•	٠	•	·									13
Appendix	II	•	•	٠	•	٠	•	•	•	•	•	•	•	
Appendix	III	•	•	٠	•	•	•	•	•	•	•	•	•	17
Distribut	tion	Li	st											

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

Abstract

Bottom samples from coastal waters of Labrador have been studied to determine grain size distribution and foraminiferal content.

The sediments vary from gravel to silty clay. Several anomalous conditions occur in which the sediment types are not those normally expected in similar topographic and geographic positions elsewhere. These conditions are probably due to imperfectly understood current patterns.

Of about 60 species for Foraminifera identified from the samples, less than a half dozen are abundant in any area. Only a few species are restricted to a given locality, and these are so uncommon that they may not have shown up in the other areas because of inadequate sampling. Neither depth nor bottom type seem to exert a decisive control over the distribution of species. No explanation can be offered at present for the absence of Foraminifera in the samples from several localities along the Labrador coast.

Introduction

In the course of the 1951 and 1952 BLUE DOLPHIN Labrador expeditions, a total of 48 bottom sediment samples were collected. Butcher (1952) discussed the 16 samples collected in 1951. All of the 1951 samples and a few of the 1952 were collected by a small snapper, most 1952 samples came from the anchor flukes, seven were from Phleger cores and one came from a beam trawl.

Mechanical analysis and examination for Foraminifera have been carried out on the remaining 32 samples. These samples are from scattered localities along the Labrador coast between Hawke Bay and Hebron Fjord (Fig. 1). The location, mechanical analysis and foraminiferal data from Butcher (1952) have been included to make the discussion of the sediments and Foraminifera as comprehensive as possible.

The wide and irregular scattering of the samples, together with an insufficient knowledge of the hydrography of the areas sampled, makes it inadvisable to attempt a detailed study of the ecology of the Foraminifera in these samples at present. Therefore, this report is confined principally to a discussion of the bottom sediments and to the general distribution of the Foraminifera.

Thanks are due to Dr. W. S. Butcher for the help he gave at the start of the study, particularly in regard to the identification of the Foraminifera; to Mr. D. C. Nutt, master of the

52-11 500 620	60°	58°	3	6.
HEBRON FJORD		1		
52-14,15,16 8		FIG. 1	25	
20		BOTTOM SAMPA		
52-18-2-17 COO ISL		BLUE DOLPH	4IN	
52-17-22: 52-19,	1	1951 - 1952	:	
OF OKAK IS				
The same				
-57° 52-10 7 POR	T MANVERS			+57
51-11 S(N)	51-9			
51-8				
51-10 52-24,35	AIN BAY			
52-25				
Larra Const	7			
F	1000			-
3	CAPE HARIGAN	v		
52-9	3			
	52-27			
	Time of			
Y	The Part of the Pa	الم الم		
-55° Ø		803		<u>+ 55</u>
P	56	are brown		
7	P	and some	~	
)	51-12 52-2 h	52-30	
	المالا	ET 51-15 7 551-1	52-28	
	HAMILTON INL	552-3	-148	
-	HAMIL	5 x 2-52-6 55	2.5.33	+
	F3 0		4 50-52-1	
7	LAKE MELVILLE	52-7 SANDWIN	The way	
	JA 2 5/1	52-29	The state of the s	~~a
	51-4 GOOSE BAY 51-3		P	523
	GOOSE BAY 51-2		52-32	3
-				~/~
-53•			HAWKE BAY	\$ 30°5

BLUE DOLPHIN, for the samples and for additional information concerning their locations; and to Dr. R. H. Backus for information he has made available.

Bottom Sediments

The bottom sediments show the normal relationship to topographic position in general (i.e., coarser sediments on the highs and finer sediments in the basins), but a few anomalies are apparent at various places along the Labrador coast. Unknown currents probably cause most of these anomalies.

Statistical data derived from the mechanical analyses of the bottom sediments are arranged according to locality in Appendix I. The samples collected in 1951 are prefixed by 51-, those collected in 1952 by 52-. Depth in meters, median diameter in millimeters (Md), phi median diameter (Md), phi standard deviation or sorting (σ_0), phi skewness (S0), phi kurtosis (K0) and general sediment type are recorded with the sample number (for a detailed discussion of these parameters see Inman, 1951). Whenever our method of analysis failed to provide sufficient data to extend the cumulative frequency curve of the sediment to either the 16 or 84 percentile, only the median is given. No mechanical analysis was made of samples 51-13, containing only invertebrate remains, or of 51-16, comprising only a pebble and a shell fragment. Geographical location of the sampling positions and type of sampler is given in Appendix I.

The most southerly sample (52-32) was taken from a small cove in the Hawke Bay area. The depth was 13 meters. The analysis of sample 52-32, which shows it to be a sandy, clayey silt, indicates that strong currents are not likely to be encountered here.

The samples from the Sandwich Bay area were taken from shallow water in relatively exposed positions along the coast where fairly strong currents and wave action may be expected. The sandy, moderately well-sorted sediments (σ_{β} : 1.09 and 1.50) which were obtained support this view.

Sand predominates in the samples from outer Hamilton Inlet with the exception of sample 51-14, a clayey, sandy silt, which was collected from a depth of 86 meters, almost twice as deep as any of the other samples. Sorting is fair to poor (σ_{β} : 1.03 to 2.99) and skewness moderate (S_{β} : 0.16 to 0.29) except at Indian Harbor (52-28), nearest the open sea. There sorting is good (σ_{β} : 0.76) and skewness is low (S_{β} : -0.05).

In the vicinity of The Narrows and Henrietta Island, which separates the outer part of Hamilton Inlet from Lake Melville, the water is shallow and tidal currents are strong. The sediments

are coarse and poorly sorted. An apparent anomaly is noted just southwest of Henrietta Island (52-6) where gravel and shells occur at a depth of 283 meters, probably the deepest point in Hamilton Inlet. Inasmuch as the water shoals rapidly toward The Narrows from this position, it is possible that strong currents sweep over the sill here, creating turbulence sufficient to keep the bottom clear of the finer sediment.

Bottom sampling within Lake Melville has been conducted principally at anchorages around the edges of the lake and consequently sedimentary data from the middle of the lake are lacking. The sediments from the anchorages are generally fine and poorly sorted.

Sandy gravel is found in the passage between Goose Bay and Lake Melville through which a large part of the runoff from the Ungava Peninsula ultimately flows. This channel is relatively shallow and currents, particularly active in late spring, might be expected to winnow the fine sediment from the channel bed. Butcher (1952) noted an apparently anomalous condition in Goose Bay in regard to samples 51-2 and 51-4. The silty sand of 51-4, from 13 meters, was skewed toward the finer grade sizes (Sø: 0.49), while the clayey silt of 51-2, from 51 meters, shows almost no skewness (56: 0.07). Water circulating in a predominantly clockwise direction in Goose Bay possibly carries sediment from the Hamilton River around the margin of the bay, depositing some of it near the entrance to Terrington Basin, the locality of 51-4. The deeper part of the bay, from which 51-2 was collected, would be largely by-passed by the main body of sediment from the river. As a result, 51-4 could receive not only enough coarse sediment to be classed as a sand, but also enough silt to skew the frequency curve of the sediment toward the finer sizes, while 51-2 would receive only finer sediments which had remained suspended longer in the more slowly circulating water at the center of the bay.

The Backway is a relatively narrow, deep inlet extending about 25 miles eastward from Lake Melville at Henrietta Island. Strong currents are not to be expected because no large streams enter The Backway. The fine, relatively poorly-sorted (σ_{δ} : 2.01 to 2.20) sediments collected here (52-4, 5 and 33) bear this out. Samples 52-5 and 52-33, taken from the top and bottom, respectively, of a single core 6-1/2 inches long, are practically identical (Appendix II).

Three samples (52-9, 26 and 27) from the BLUE DOLPHIN's anchor flukes were recovered in the Cape Harrigan area between Hamilton Inlet and Nain Bay. All the positions are adjacent to the open sea and the sediments have median diameters within the sand sizes. Phi sorting is fair to poor (σ_{ϕ} : 1.80 to 3.27).

All samples within Nain Bay itself are silt. The sample with the coarsest median diameter came from the deepest part of

the bay, nearest the sea. This reversal of the usual order could very likely be explained if one had a more complete knowledge of the current structure at the outer end of the bay. In 1952 cores were obtained from approximately the same positions as 51-8 and 51-10 (samples 52-23 and 34, and 52-24 and 35, respectively). These cores were about 9 inches long. The top samples were essentially the same as the bottom samples in each of the cores and the analyses correspond closely with those of the 1951 surface samples from the same locations.

Sample 52-25 was collected from a small, nearly landlocked embayment off Anaktalik Bay just south of Nain Bay. Little circulation is likely here and the sediment is a silty clay, the finest of the 1951 and 1952 BLUE DOLPHIN bottom samples.

A gravelly sand bottom is found near Port Manvers, north of Nain Bay (52-10). The location is several miles from the ocean and is protected from wave action by a narrow inlet. The coarse sediment indicates that considerable water moves between Webb Bay, 12 miles farther inland, and the sea through Port Manvers Run.

A few samples were collected near the Okak Islands and Cod Island. The sediments are mostly sand; sorting is fair to poor (σ_6 : 1.76 to 2.89). Except for samples 52-13, 52-22 and 52-18, the positions are well exposed to the ocean. Samples 52-13 and 52-22 are sand although they were collected in the narrow inlet between the Okak Islands. Clayey silt is found in Kai-Kai Inlet (52-18), the most protected of the positions in this area.

Five samples were collected in the vicinity of Hebron Fjord. Three of these samples are from the South Anchorage, one-third of the way to the head of the fjord. The deepest sample (52-14, from 27.5 meters) is a silty sand, while the shallower samples (52-15 and 16, both from 18 meters) are sandy and gravelly silts. Sorting is very poor in these samples (σ_6 : 3.27 to 4.59). The sediment from a depth of 13 meters at Hebron, at the seaward end of the fjord, is a silty sand and sorting is fair (σ_6 : 1.19). Ferdinand Inlet, an exposed bay a few miles south of Hebron Fjord, has a gravelly sand bottom (52-12). Sorting could not be determined in the analysis of this sample.

Foraminifera

The Foraminifera counted from each sample are listed in Appendix III. Butcher (1952) points out that it would be more significant to express the Foraminifera as number per unit area, but since the area sampled is not known it has been necessary to report them as number per gram of sediment. If the occurrence of a species in a sample is less than 0.1 per gram, its presence is indicated by a "P". The species have been identified princi-

pally from Cushman (1944 and 1948), Parker (1948 and 1952), Phleger (1951) and Phleger and Parker (1952).

Species: The species of Foraminifera from the BLUE DOLPHIN samples are listed below by genera in alphabetical order. The general area and range of depth in which each species was found is given. The number of Foraminifera per gram of sediment is usually small and notation is made of abundance unusual to the region. Inner Hamilton Inlet includes Goose Bay and Terrington Basin; middle Hamilton Inlet includes Lake Melville, The Backway and The Narrows; and outer Hamilton Inlet is the area seaward from The Narrows.

- Ammobaculites cf. foliaceous (H. B. Brady). Middle Hamilton Inlet; 24 meters.
- Ammodiscus cf. catinus Höglund. Middle Hamilton Inlet; 18 meters.
- cf. Amphicoryne falx (Jones and Parker). Middle Hamilton Inlet; 22 meters.
- Angulogerina angulosa (Williamson). Middle and outer Hamilton Inlet; 46 and 54 meters.
- Astrononion stellatum Cushman and Edwards. Middle and outer Hamilton Inlet; 18 to 54 meters.
- Bigenerina arctica (H. B. Brady). Nain Bay and Hebron Fjord; 18 and 22 meters.
- Bolivina pseudopunctata Höglund. Port Manvers; 20 meters.
- Bulimina marginata d'Orbigny. Nain Bay; 116 meters.
- Cassidulina algida Cushman. Middle Hamilton Inlet; 18 meters.
- Cassidulina islandica Norvang var. minuta Norvang. Outer and middle Hamilton Inlet, Cape Harrigan, Nain Bay, Port Manvers and Hebron Fjord; 11 to 116 meters.
- Cassidulina laevigata d'Orbigny. Middle Hamilton Inlet; 18 meters.
- Cassidulina norcrossi Cushman. Outer and middle Hamilton Inlet; 20 to 283 meters.
- Cibicides cf. concentricus (Cushman). Middle Hamilton Inlet; 283 meters.
- Cibicides lobatulus (Walker and Jacob). Outer and middle
 Hamilton Inlet (abundant in the vicinity of The Narrows)
 and Port Manvers; 18 to 283 meters. An attached form.

- Cibicides pseudoungeriana (Cushman). Port Manvers; 20 meters.
- Cibicides sp. Cape Harrigan; ll meters.
- Cribroelphidium bartletti (Cushman). Outer Hamilton Inlet,
 Nain Bay, Port Manvers and Hebron Fjord; 18 to 283
 meters.
- Discorbis columbiensis Cushman. Port Manvers and Hebron Fjord; 18 and 20 meters.
- Discorbis sps. Middle Hamilton Inlet, Nain Bay and Hebron Fjord; 18 to 283 meters.
- Eggerella advena (Cushman). Sandwich Bay (abundant), outer and middle Hamilton Inlet, Cape Harrigan (abundant), Nain Bay, Okak Islands, Cod Island (abundant) and Hebron Fjord (abundant); 5.5 to 133 meters.
- Elphidiella arctica (Parker and Jones). Outer Hamilton Inlet; 46 meters.
- Elphidium cf. articulatum d'Orbigny. Port Manvers; 20 meters.
- Elphidium incertum (Williamson). Outer and middle Hamilton Inlet, Cape Harrigan, Nain Bay and Port Manvers; 11 to 54 meters.
- Elphidium incertum (Williamson) var. clavatum Cushman. Outer and middle Hamilton Inlet, Nain Bay and Port Manvers; 18 to 283 meters.
- Elphidium subarcticum Cushman. Sandwich Bay, outer and middle Hamilton Inlet, Cape Harrigan (common), Nain Bay, Port Manvers and Hebron Fjord; 5.5 to 283 meters.
- Entosolenia lineata (Williamson). Middle Hamilton Inlet; 18 meters.
- Eponides frigidus (Cushman). Sandwich Bay, outer and middle Hamilton Inlet, Cape Harrigan (common), Nain Bay, Port Manvers and Hebron Fjord; 11 to 283 meters.
- Eponides wrightii (H. B. Brady). Middle Hamilton Inlet; 283 meters.
- Globigerina inflata d'Orbigny. Nain Bay; 47.5 meters.
- Globulina glacialis Cushman and Ozawa. Outer and middle Hamilton Inlet; 46 and 54 meters.
- cf. Gyroidina sp. Hebron Fjord; 18 meters.

- Haplophragmoides glomeratum (H. B. Brady). Outer Hamilton Inlet and Okak Islands; 5.5 and 86 meters.
- Haplophragmoides sp. Middle Hamilton Inlet; 283 meters.
- Labrospira crassimargo (Norman). Outer Hamilton Inlet, Nain Bay and Okak Islands; 5.5 to 86 meters.
- Labrospira jeffreysii (Williamson). Outer Hamilton Inlet,
 Nain Bay and Hebron Fjord; 18 to 116 meters.
- Labrospira sps. Middle Hamilton Inlet and Nain Bay; 82 and 164.5 meters.
- Lagena sps. May include some Entosolenia sps. Outer and middle Hamilton Inlet, Cape Harrigan and Nain Bay; 46 116 meters.
- Miliammina groenlandica Cushman. Nain Bay; 62 and 116 meters.
- Nonion cf. barleeanum (Williamson). Outer and middle Hamilton Inlet and Nain Bay; 18 to 283 meters.
- Nonion labradoricum (Dawson). Outer and middle Hamilton Inlet, Nain Bay, Port Manvers and Hebron Fjord; 18 to 86 meters.
- Nonion orbiculare (H. B. Brady). Middle Hamilton Inlet; 283
- Nonionella atlantica Cushman. Outer and middle Hamilton Inlet and Nain Bay; 20 to 57 meters.
- Patellina corrugata Williamson. Middle Hamilton Inlet; 18 meters.
- Proteonina atlantica Cushman. Outer and inner Hamilton Inlet; 46 to 86 meters.
- cf. Psammosphaera fusca F. E. Schulze. Port Manvers; 20 meters.
- Pseudopolymorphina curta Cushman and Ozawa. Middle Hamilton Inlet; 18 meters.
- Pulleniatina obliquiloculata (Parker and Jones). Nain Bay; 11 meters.
- Pyrulina cylindroides (Roemer). Nain Bay, 57 meters.
- Reophax arctica H. B. Brady. Sandwich Bay and Ferdinand Inlet; 5.5 and 18 meters.

- Reophax curtus Cushman. Outer Hamilton Inlet and Nain Bay; 46 to 116 meters.
- Reophax sps. Middle Hamilton Inlet and Nain Bay; 62 and 91 meters.
- cf. Sphaeroidina sp. Port Manvers; 20 meters.
- Spiroplectammina biformis (Parker and Jones). Sandwich Bay, middle Hamilton Inlet and Nain Bay; 5.5 to 164.5 meters.
- Spiroplectammina typica Lacroix. Middle Hamilton Inlet; 22 meters.
- Textularia tenuissima Earland. Middle Hamilton Inlet and Nain Bay; 11 to 283 meters.
- Textularia torquata Phleger and Parker. Nain Bay and Hebron Fjord; 18 to 62 meters.
- Trochammina inflata (Montagu). Middle Hamilton Inlet; 22 meters.
- Trochammina macrescens H. B. Brady. Middle Hamilton Inlet and Nain Bay; 62 and 91 meters.
- Trochammina quadriloba Höglund. Nain Bay and Hebron Fjord; 18 to 16 meters.
- Trochammina rotaliformis Wright. Okak Islands; 5.5 meters.
- Trochammina squamata Parker and Jones. Nain Bay and Port Manvers; 20 to 82 meters.
- Virgulina sp. Middle Hamilton Inlet; 54 meters.

Distribution of species: Several species are apparently restricted to single localities along the Labrador coast but most of these species are infrequent even in their restricted areas. None are abundant. Butcher (1952) listed species which appeared to be restricted either to Hamilton Inlet or to Nain Bay. Several of these were found in other areas when the 1952 samples were studied. They include Cibicides lobatulus (Walker and Jacob), Elphidium incertum (Williamson), Nonion labradoricum (Dawson), Textularia tenuissima Earland and Trochammina quadriloba Hoglund. It is possible that many of these less common forms will be found at other localities in the region when more samples have been collected.

Eggerella advena Cushman is by far the most common species present in the samples and is found in the greatest number of locations. It appears to be absent only from the Hawke Bay

(where no Foraminifera were found) and Goose Bay areas. Elphidium subarcticum Cushman and Eponides frigidus (Cushman) are correspondingly ubiquitous in their distribution, although they are found in lesser numbers than Eggerella advena. One other species with a relatively wide distribution is Nonion labradoricum (Dawson). It has been identified in samples from Hamilton Inlet exclusive of Goose Bay, in Nain Bay, at Port Manvers and in Hebron Fjord. This form is not common in any of the samples and, with more intensive sampling, may eventually be found in other areas. Cibicides lobatulus (Walker and Jacob) has a more limited distribution though it sometimes occurs in relatively high concentrations. It is found only in outer Hamilton Inlet, Lake Melville and at Port Manvers (rare).

No definite relationship has been observed between depth of water and species distribution. In general, there seems to be no correlation between bottom type and the distribution of the benthonic forms although it is noted that <u>Cibicides lobatulus</u>, an attached form, is found almost exclusively in areas of gravel or gravelly sand. Probably the few individuals found in finer sediments (51-1 and 17) are dead tests carried in from other areas, because there would be no solid attachment for living individuals in such an environment. Reophax arctica H. B. Brady, an arenaceous form, is found only off Sandwich Bay (52-31) and in Ferdinand Inlet (52-12). The bottom at both locations is sandy but both locations are also open to the ocean. It is hard to determine whether bottom type, hydrographic conditions, or other factors such as food and light exert the controlling influence in the distribution of this species.

No Foraminifera were found at Eagle Cove in Hawke Bay (52-32); at Ice Tickle in outer Hamilton Inlet (52-30); at Mulligan Bay in Lake Melville (52-8); in Goose Bay at 51-3 and 51-4; at Hopedale Harbor (52-27); at Windy Tickle, Cape Harrigan (52-26); at Kai-Kai Inlet and Sutherland Inlet, Cod Island (52-18, 19 and 20); or at Hebron (52-11). The water in the vicinity of these samples, except at Goose Bay, is not likely to be too fresh for all Foraminifera, nor does the bottom water appear to be stagnant except possibly at Eagle Cove and Kai-Kai Inlet. The sediment types range from clayey silt to gravel. Future study and additional sampling may eventually provide the explanation for the lack of Foraminifera in the samples from these areas.

Planktonic Foraminifera have been found only in two samples, both from the Nain area (51-7 and 52-25). Pulleniatina obliqui-loculata (Parker and Jones) was found at the head of Nain Bay, and Globigerina inflata d'Orbigny was found in the small embayment at the north side of Anaktalik Bay. Both are infrequent.

References

- Butcher, W. S. (1952) Bottom sediments and Foraminifera from Labrador, BLUE DOLPHIN 1951, Woods Hole Oceanographic Institution Reference No. 52-20 (Unpublished).
- Cushman, J. A. (1944) Foraminifera from the shallow water of the New England coast, Cushman Lab. for Foram. Res., Spl. Publ., No. 12.
- (1948) Arctic Foraminifera, Cushman Lab. for Foram.

 Res., Spl. Publ., No. 23.
- Inman, D. L. (1951) Measures for describing the size distribution of sediments, Univ. of Calif., Scripps Inst. of Oceanogr., Sub. Geol. Rpt. No. 15 (revised), Ref. 51-45.
- Parker, F. L. (1948) Foraminifera of the continental shelf from the Gulf of Maine to Maryland, Bull., Mus. Comp. Zoo., Harvard Univ., Vol. 100, No. 2.
- (1952) Foraminifera species off Portsmouth, New Hampshire, Bull., Mus. Comp. Zoo., Harvard Univ., Vol. 106, No. 9.
- (1952) Foraminiferal distribution in the Long Island Sound-Buzzards Bay area, Bull., Mus. Comp. Zoo., Harvard Univ., Vol. 106, No. 10
- Phleger, F. B, Jr. (1951) Foraminifera distribution in some sediment samples from the Canadian and Greenland Arctic, Univ. of Calif., Scripps Inst. of Oceanogr., Sub. Geol. Rpt. No. 19, Ref. 51-6.

Appendix I

LOCATION OF SAMPLES

Sample No.	Depth (m)	Sampler	Latitude (N)	Longitude (W)
1234567 551	851130176726666451158243121121182524032273111 1215176726666451158243441038578 12211211211212121212121212121212121212	snapper "" "" "" anchor "" anchor "" snapper trawl snapper trawl snapper "" anchor	of 87418 a 4802607500871228457685606285401364 -32221218 a -336.026075008712228457685606285401364 -336.026075008712228457685606285401364 -336.026075008712228457685606285401364 -336.02607500871222845768560606285401364 -555555555555555555555555555555555555	67555555555555555555556666666666666666

Appendix I (cont'd.)

Sample No.	Depth (m)	Sampler	Latitude (N)	Longitude (W)
52-29	22	anchor " " corer "	53-43.4	59-01.2
52-30	9		54-28.4	57-15.1
52-31	5.5		53-51.7	56-59.3
52-32	13		53-01.4	55-48.7
52-33	164.5		54-05.2	57-54.1
52-34	62		56-36.4	62-06.6
52-35	82		56-36.0	61-57.1

Characteristics of Bottom Sediments, Labrador 1951-52	Type	4 sandy, clayey silt	silty sand	6 silty sand	7 silty sand	3 clayey, silty sand	silty, gravelly sand	invertebrate remains	O clayey, sandy silt	7 silty sand	silty, sandy gravel	silty, gravelly sand	pebble and shell	clayey, silty, sandy gravel	. clayey silt	clayey silt
Sed	K_{ϕ}	172.0	!	2,16	26.0	1.23	;	;	0,10	2.77	1	-	;	;	i	ļ
Bottom	Se	0.32	-0.22	0.16	-0.05	0,29	;	;	0.16	0.16	;	0.89	;	;	0.34	0.31
ics of	$\hat{oldsymbol{ ho}}$	1.90	1,50	1.09	92.0	2.08	:	;	2.99	1.03	;	3.49	!	;	2,20	2,13
terist	Mag	5.42	3.60	3.98	3.42	3.78	2.67	;	5.10	3.11	-0.59	1.81	!	0.23	6.03	6,10
	Md (mm)	0.023	0.083	690.0	†60°0	0.073	0.157	1	0.029	0.115	1.470	0.285	1	0.852	0.015	0.015
Statistical	Depth (m)	13	11	5.	11	6	917	94	98	15	20	弦	35	283	164.5	164.5
	Sample No.	52-32	52-1	52-31	52-28	52-30	51-12	51-13	51-14	52-2	51-5	51-15	51-16	52-6	52-5	52-33
Appendix II.	Агеа	Hawke Bay	,	Sandwich Bay			Outer	Hamilton	Inlet				Lake	Melville		

			Appe	Appendix II		(cont'd.)		
Агеа	Sample No.	Depth (m)	Md (mm)	₩d,⁄k	B	S	Κρ	Туре
	52-4	22	0.024	5.40	2.01	0.63	1.08	sandy, clayey silt
	52-3	18	0.201	2.32	2.30	0.83	!	gravelly silty sand
Lake	51-17	91	600.0	69.9	2.70	0.15	0.21	clayey silt
Melville	52-7	777	0.039	4.70	48.4	0.07	;	clayey, silty sand
(cont'd.)	52-29	22	†00°0	7.84	2.44	0.22	;	clayey silt
	52-8	77	0.087	3.53	92.0	0.33	3.33	silty sand
	51-1	₹8	0.005	7.65	2.48	-0.28	:	clayey silt
	ب 1	=	1.000	00.00	:	;	;	sandy gravel
Goose					-	i	1	
i C	51-2	77	600.0	7.80	1.94	0.07	29.0	clayey silt
Day	51-4	13	0.092	3.45	1.31	641.0	1.46	silty sand
	52-27	11	0.102	3.30	1.96	-0.24	:	gravelly, silty sand
Саре	52-26	13	960.0	3.38	1.80	0.12	1.92	silty sand
Harrigan	52-9	11	0.344	1.54	3.27	0.33	0.70	gravelly, silty sand
Nain	52-24	8 2	0,011	6.47	1.78	12·0	:	clayey silt
Вау	52-35	82	600.0	6.78	1.81	0.12	99.0	clayey silt

	Туре	clayey, sandy silt	clayey silt	silty clay	clayey silt	clayey silt	clayey silt	clayey silt	sandy silt	gravelly sand	silty sand	silty sand	silty sand	gravelly, silty sand	gravel	clayey, gravelly, sandy silt
	K Ø	0.89	62.0	1	!	19.0	1	09.0	1,11	1	1,61	1.56	1.79	1	!	1
(cont'd.)	S	0.62	0.32	0.14	0.21	0.20	0.20	0.36	0.39	1	0.22	0.15	-0.18	1	;	0.03
ii (c	P	2,12	2,10	2.53	1.90	1.74	2,31	2,58	1.88	1	2.13	1.76	1.32	ļ	;	2.23
Appendix	Md_{p}	4.45	5.73	8.03	6.32	84•9	6.77	6.78	4.35	1.05	3.33	3.62	3.82	3.01	2- 5	3.18
Ap]	Md (mm)	0.052	0.019	†00°0	0.013	0.011	600.0	0.010	640.0	0.483	0.099	0.081	0.071	1.240	†	0.110
	Depth (m)	116	62	47.5	62	62	77	57	11	20	ሊ ሊ	133	20	59	22	1 7
	Sample No.	51-9	51-11	52-25	52-23	52-34	51-10	51-8	51-7	52-10	52-13	52-22	52-21	52-17	52-19	52-20
	Агеа			Nain	Вау	(cont'd.)				Port Manvers			•	Okak Islands	and	God Island

clayey silt

:

0.19

0.007 7.24 2.89

52-18 159

(cont'd.)	
II	
Appendix	

Туре	gravelly sand	silty sand	silty sand	clayey, gravelly, sandy silt	clayey, gravelly, sandy silt
K Ø	:	1.52	29.0	;	;
S & KA	1	0.36 1.52	0.31	न्ट ै 0	-0.36
Md & OB	1	1.19	3.27	4.59	3.39
Mdø	1.58	3.26	2.30 3.27	4.29 4.59	4.41
Md (mm)	0.335	0.105 3.26 1.19	0.203	0.051	0.047 4.41 3.39 -0.36
Depth (m)	18	13	27.5	18	18
Sample No.	52-12	52-11	52-14	52-15	52-16
Агеа	Ferdinand Inlet		Hebron	Fjord	

	91-55	81		- ω	П	П		П	П	П	Т	П	П	Т	Т	П	П	П	П	П	П	П	_	П	П	П	Т	П	Π	Т	П	П	Т	П	T	Т	П	П	Т	П
Z 0	51-58	81	0	8	HH	++-	_	Ш	\mathbb{H}		+	1	4	<u>-</u>	+	H	4	1	H	H		H	T	${\mathbb H}$	H	퓌		H	Н	+	H	Н	+	+	2 3	+-	1	H	╁	H
HEBRON	51.52	2.72	0	20 4	H	Ħ	îH	1	+	+	+	Ť	Τ,	<u>-</u>	\dagger	 	$\uparrow \uparrow$	7	H	$\dag \dag$	T	$\dagger \dagger$	+	H	$\dagger \dagger$	~	Т	H	Ħ	\dagger	tt	$\dagger \dagger$	\dagger	H	İΤ	\dagger	Т	H	5	Н
	11-55	81	0	3	Ш	\pm							П	耳	1		П	П			П	\coprod		廿	Ц	\prod		Ц	П	1	П	П			П	土	Ц	Ц	I	
LEBDINAND	51.52	81	0	۵.	Ш	Ш						Ш	Ц	Ш		Ц	Ц	Ш	Ш	Ц	Ш	Ш	\perp		Ц	Ш		Ц	Ц		စ	Ц		Ц	Ц	\perp	Ц	Ц	l	
o	81.52	65 l	0	ં	Ш	\coprod	Щ	Ш	Щ	Ш	\perp	Ш	Ц	Ш	1	Ш	Ц	4	Ц	Ц	Ц	Ц	Ц	Ц	Ц	Ц	1	Ц	Ц	\downarrow	Ц	Ц	\perp	Ц	Ц	1	Ц	Ц	\perp	Ш
I SLANO	02.52	77	0	0	Ш	#	Ш	\square	Щ	\coprod	\bot	-	H	\coprod	\downarrow	\coprod	$\!$	#	\mathbb{H}	$\!$	Н	\coprod	\mathbb{H}	4	Н	\coprod	\bot	H	H	+	H	H	4	4	₩	+	Н	\coprod	\bot	Ц
< <	61.52	52	0	0 9	HH	₩	Н	\mathbb{H}	\mathbb{H}	+	+	╂	H	4	+	H	₩	H	H	H	╫	H	╂	\mathbb{H}	╁	╫	+	₩	H	╀	₩	╁┤	\mathbb{H}	4	H	+	H	H	+	Н
COD	12.58	50	0	-	HH	+	Н	H	+	+	+	╫	₩	-	+	╫	Н	$\dagger \dagger$	+ 1	${\mathbb H}$	H	╫	+	+	╁	H	+	╁	Н	+	╫	H	+	+	H	╁	Н	H	+	Н
SUNAISI	52.22	133	0	<u> 00</u>	HH	+	Н	H	$\forall t$	$\forall t$	+	H	H	- 8	+	$\dagger \dagger$	tt	$\dagger\dagger$	H	\vdash	$\dagger \dagger$	$\dagger\dagger$	Ħ	\dagger	H	H	\dagger	H	Ħ	\dagger	H	Ħ	\dagger	+	Ħ	\dagger	H	H	t	П
OKAK	51.52	3.8	0	0.7	Ш	\parallel	Ш			\coprod	I		tt	S	Ì		\prod	\coprod			S	N.			П	\coprod	Ī				\prod	\coprod			П	I		<u>م</u>	\perp	
PORT MANYERS	51.58	50	0	33	\prod	\prod	8.	۳	·∏	•	?~	60.0	ž.	8.	8.	141	2	5			\coprod	\coprod			\prod	80	8.	\prod	80		\prod	\coprod	. 8		П			~		
	4.18	H	-		Ш	\prod	Щ	Ш	Ц	Ц			Ц	-	\downarrow		Ц	Ш	Ц	Ц	Ц	Ц	Ц	\downarrow	Ц	Ц	1.	Ц	Ц	1.	Ц	Ц	Ц	1	-	\perp	Ц	Ц	\perp	Ц
	8-15	75	0	~			Ш	+	$\downarrow \downarrow$	$\dashv \downarrow$	4	Ц.	\coprod	-	\bot	Щ	?	<u>-</u>	Н	Н	\coprod	Ш		4		\coprod	\perp	\perp	H	4		\dashv	4	Ц.	Ц	╀	Н	H	\bot	Ц
	01-15	2.2	0	- 8	╂╂	╂╂╺	H	++	╁	╫	+	╫	₩	9	+	╂	₩	╫	H	H-	╁┼	+-	-	7	Н	╫	+	╫	H	╁	╁┼	H	╁	_	낶	+	H	₩	H	Н
ΒΑΥ	62.53	20	0	1 8	HH	++	Н	++	$\forall \forall$	$\dagger \dagger$	+	H	1	4	+	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	Ħ	\dagger	$\dagger \dagger$	$\dagger \dagger$	-	T	Ħ	Ħ	\dagger	H	H	†	$\dagger \dagger$	16	\dagger	+	ΙŤ	+	H	5	6	一
NAIN	25-22	2.74	7-	4		#		+-	H	$\dagger \dagger$	+	\dagger	l `	•	+	· ,	<u>. </u>	††	$\dagger \dagger$	\dagger	#	m	İ	\dagger	$\dagger\dagger$	┪	\dagger	$\dagger \dagger$	Ħ	\dagger	$\dagger \dagger$	\dagger	Ħ	\dagger	-	+	\dagger	ļί	Ħ	\dashv
Y Z	11-15	29	0	2		\prod			\prod	\prod	T		\prod	-]		Ϊ]]†			<u> </u> -			- 1	\prod			\prod			" .]-	1	Π]-		\prod	\prod	\exists
	6-15	911	0	9		\prod	٩		\prod	\prod	\prod	2		~	I	4 (1	6	\prod		\prod	\prod	6	۵٥	1	\prod			\prod	I		-]		I	\prod		Ξ	\prod	\prod	
	52.35	28	0	3	Ш	\prod	Щ	Щ	П	П	\prod	\prod	\prod	~		\prod	\prod	\prod	П	\perp	\prod	П	Ľ	:[\prod	\prod	$ \downarrow $	\prod	Ц	\prod	\prod	П	\prod	\prod	\prod	\prod	\prod	Ц	. 4	
	52.24	85	0	9 8	Щ	#:	- []	Ш	\coprod	Щ	Ш	Щ	₩	~	Ļ	Ц	Ц	Щ	Ц	4	\coprod	\coprod	Щ	لِ	\coprod	Ц	\perp	\coprod	\coprod	1	Ц	Ц	41	4	Ц	\downarrow	$\downarrow \downarrow$	<u>س</u>	¥	
A GAN	6 - 2 G	11 E1	0	8	Ш	#	$ \!$	1	44	41	4	<u>, </u>	\coprod	7	1	: [;	-	=	\coprod	4	\coprod	H	\parallel	4	$\!$	\coprod	+	$\!$	H	\downarrow	\coprod	\coprod	Н	\downarrow	\coprod	+	\parallel	\coprod	Щ	
CAPE HARRIGAN AREA	52.28	11	0	0	H	╁╂	H	+	+	\mathbf{H}	+	+	H	₩	+	#	H	H	H	+	╁┼	╁	\mathbb{H}	+	H	H	+	H	H	+	H	H	\mathcal{H}	+	₩	+	\parallel	H	\mathbb{H}	\dashv
Ī	p - 15	£1	0	0	┞┼┤	╁┼	H	++	+	╫	+	+	H	₩	+	H	╁	₩	╫	Н	₩	₩	+	+	₩	₩	+	₩	Н	+	₩	H	\mathbb{H}	+	₩	+	H	H	+	Н
GOOSE BAY AREA	5.18	1S	0	 -	11	##		††	$\dagger \dagger$	††	\dagger	+	H	††	+	$\dagger \dagger$	$\dagger \dagger$	††	$\dagger \dagger$	\vdash	$\dagger \dagger$	$\dagger\dagger$	Н	\dagger	H	H	\dagger		-	\dagger	$\dagger \dagger$	Ħ	\dagger	+	$\dag \dag$	\dagger	Н	H	T	Н
09 g 4	5.13	11	0	0	П	Ш	П	\prod	\prod	\prod	П			Ц	\perp		Ц	\prod	Ц		П	П	Д		П	Ц	\perp	П	Ц	1	Ц	Ц	П		Ц	I		П	\perp	
	1.12	78	c	<u> -</u>	Ш	Ш	Ш	Ш	Щ	<u> </u>	Ш	Ш	\coprod	Ц	\perp			Ц	Ц	Ц	Ш	\coprod	Ц		<u> </u>	Ц	\perp	Ц	Ц	\perp	Ц	Ц	ļ.	1	Ц	\perp	Ц	Ц	Ц	Ц
	8.58	\$ 2	0	0	Ш	H	Ш	-	\coprod	$\!$	#	4		$\!$	\bot	\coprod	Щ	#	\coprod	\perp	$\!$	\coprod	Н	\bot	\coprod	H	\bot	Н	Н	\downarrow	\coprod	Н	Ц	\perp	Н	\perp	Ц	Н	\coprod	\Box
	92.52	22	9	4	Ч -	+++	++	$+\!\!+\!\!\!+$	╫	H	\mathbb{H}	\Box	H	\coprod	\downarrow		-	1	H	4	₩	H	Н	+	H	₩	+	H	H	+	$oxed{\sqcup}$	Н	+;	4	H	+	4	H	H	\dashv
AREA	Z - ZS	54	0	2 -		+++	+	╁╂	₽	17	H	+	Н	₩	H	,	1	ΙŤ	╂╂		╫	╁	╂	Ť	Н	╁	+	+	Н	+	H	1	╫	+	₩	낻	4	H	Н	\dashv
	21-15	81	0	8 2	+	1	+	4	<u> </u>	12.2	_	++	2	╁╂	H	ш	• 1	- ∾ TT	╀┸	+	╫	$\dagger \dagger$	H	Ť	H		+	7	H		H	Ηi	H	+	H	+	+	H	H	\dashv
MELVILLE	52.4	22	0	1 5	1	tři	+	1	ŤĦ	+	H	+	Ť	$\dagger\dagger$	+	T		1	$\frac{1}{1}$	+	H	H	╁╂	+	ΙŢ	H	+	Ť	H	Т	+	╁╁	$\dagger \dagger$	<u>_</u>	Н	4	+	H	H	ᅥ
lê L	52.33	5.591	0	0		H	\parallel	#	$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$	\top	\dagger	$\dagger \dagger$	Ħ		\dagger	$\dagger \dagger$	H	\dagger	H	Ħ	1	T	H	Ħ	T		H	\dagger	$\dag \uparrow$	$\dagger \dagger$	†	Ť.	;†	Ť	\dagger	H	H	┪
LAKE	3.58	5 1 91	0	8				Π	\parallel	$\dagger \dagger$	\prod			$\dagger \dagger$	П			$\dagger \dagger$	П	\top		$\dagger \dagger$	$\dagger \dagger$	T	H	Ħ	П		П		\parallel	П	Π	1.	•	Ħ	1	П	$\dagger \dagger$	\exists
L A	9.58	593	0	38	\prod	\prod		\prod	6	- 00	\prod		-	\prod		5	-	2	-]		ŀ	c	\prod		1	<u> </u>	-					\prod	\prod	-	-	\prod	T		\prod	
	91-19	32	0	-	Ш	Щ	Ш	П	Щ	Ĭ	\prod	Ц	\prod	Ц	-		Ц	\prod_{i}	Ц	\perp	Щ	Ц	Ц	\perp	Ц	Ц	П		Ц	Ц	\prod	П	Ц	Д	Ц	П	\perp	Ц	\coprod	\Box
	51.15	75	0	32	\coprod	-~	$\dashv \downarrow$	<u>-</u>	2 3	7		4	4	?	L		┵	-	Н	- 2	Щ	$\!$	\coprod	- T	5	-	¥	4	Ц	Ц	Н	Н	\coprod	Ц	Н	Н	\downarrow	Щ	Ļ	┩
,	3.13	0.5	0		\mathbb{H}	╂╁┧	+	╁	+;	H	H	\mathcal{H}	+	-	H		-	-	╁┼	+	H	₩	+	+	H	1	1	+	Н	\mathbb{H}	dash	H	\mathbf{H}	\mathbb{H}	H	H	+	H	H	4
LTO	51.14	96 96	0	- 2	++	+++	+	++	+	+	╁	+	+	7	╫	+	+	${}^{\dag}$	H	+	 -	1	╫	+	Н.	廾	+	Η.	4	Н	${\mathbb H}$	Н	╫	+	H	╂╂	+	╁	╫	\dashv
AM!	£1.13	917	0	4	++	$\dagger\dagger\dagger$	+	††	$\dagger \dagger$	33	$\dagger\dagger$	$\dagger \dagger$	\dagger	Ť_	$\dagger \dagger$		+	$\dagger \uparrow$	H	+	ΙĖ	ΙŤ	$\dagger \dagger$	+	H	Ħ	$\dagger \dagger$	+	iΤ	H	+	H	$\dagger \dagger$	\dagger	╁	H	\dagger	H	╫	
OUTER HAMILTON	21-15	97	0	8	+	~~	$\dagger \dagger$	 	+-	80		-	۱,	۷ ۷ آ	٤	~-	+	6	$\dagger \dagger$	_	\dagger	4	4		~	+	$\dagger \dagger$	+	-	Ħ	١	+	††	$\dagger \dagger$	\dag	$\dagger \dagger$	\dagger	\dagger	$\dagger \dagger$	\dashv
00 TE	52.30	6	0	0				ŢΪ	\prod	ŢΪ	\prod	Ţ	<u> </u>	Π̈́	Ħ	İ	\perp	Ţ	\prod	Ť		T		j	Ť	İ	\prod			Ħ			\prod	Ħ	$ \uparrow $	\prod	T	Ħ	\prod	1
	82.28	11	0	9	\prod	Ш	\prod	\prod	\prod	\prod	\prod	\prod	-	٥	\prod	\prod				\prod		\prod	\prod	project		\prod	\prod		\prod	\prod	\perp	\prod	\prod	\prod		\prod	I		\prod	
YA8	18.53	ς•ς	ပ	99.7	Щ	Ш	\coprod	\coprod	\prod	\prod	\coprod	\coprod	1	9/	\coprod	1	1	Ш	Ц	Ц	1	\prod	\coprod	Ц	\prod	Ц	Ц	\perp	Ц	Ц	7	\prod	1	Щ	Ц	Ц	1	Ц	Ц	\perp
SENDMICH SEAL	1.25	11	0	0	\coprod	\coprod	#	#	\coprod	#	\coprod	+	4		\coprod	╁	4	-	H	\parallel	4	\coprod	\coprod	\downarrow	4	H	$\downarrow \downarrow$	4	$\!$	\coprod	4	H	H	Щ	\parallel	\coprod	+	4	$\!$	4
ATO BANKE	UG 53	ε:	0	0	+	HH	H	\coprod	₩	₩	\coprod	\coprod	+	₩	\coprod	+	+	#	H	\mathbb{H}	4	╀	H	\dashv	4	H	\coprod	+	H	$\!$	4	H	H	\mathcal{H}	4	H	+	4	₩	4
· ·		IN METERS		- <u>-</u>	FALX	270	NA PSEUCOPUNCTATA	ANOICA VAR. MINUTA		OES CF. CONCENTRICUS	V V	SELPHIOLUM BARTLETT		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	ERTUM VAR. CLAVATUM	1.5	ESTRIGIOUS	11	ROLDINA SP	HRAGMOIDES GLOMERATUM -	PIRA CRASSIMARGO		ONA	EANUM	1CULARE	15	AT A	A FUSCA	NA CUR		l ľ	HAEROIDINA SP.	5.8		MMINA INFLATA	ORILOBA	AMATA	INA SP.	
LOCALITY	SAMPLE	DEPTH	TOTAL P	TOTAL B	AMMOO I	ANGULO ANTRON BLGENE	80	CASSID C. ISL	NO.	101810 101810		OR 1880	S & C C C	100 100 100 100 100 100 100 100 100 100	- X - X - U	- V	100 C	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	E. SPS	SLOBUL OF GRUE	HAPLOP	LABROS	L. JEF	LAGENA MAA	Z 2		No. SPS	PATELL	- C	PYRUL	REOPHA		SPIROP	S. TYP	T . T OR	T MACHA	- T		VIRGUL	

APPENDIX III. OCCURRENCES OF FORAMINIFERA IN THE BLUE DOLPHIN SAMPLES -- IN NUMBER PER GRAM OF SAMPLE.

.

DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS Page la Contract N6onr-27701 (NR-083-004)

Copies	Addressees
1	Commanding Officer Air Force Cambridge Research Center 230 Albany Street Cambridge 39, Massachusetts Attn: CRHSL
1	Allan Hancock Foundation University of Southern California Los Angeles 7, California
5	Armed Services Technical Information Center Documents Service Center Knott Building Dayton 2, Ohio
1	Assistant Secretary of Defense (Research & Development) Pentagon Building Washington 25, D. C. Attn: Committee on Geophysics and Geography
1	Director Bermuda Biological Station for Research St. George's, Bermuda
1	Director Chesapeake Bay Institute Box 426A R. F. D. #2 Annapolis, Maryland
2	Chief, Bureau of Ships Department of the Navy Washington 25, D. C. Attn: Code 847
1	Chief, Bureau of Yards and Docks Department of the Navy Washington 25, D. C.
14	Chief of Naval Research Department of the Navy Washington 25, D. C. Attn: Code 416 (2) Code 466 (1) Code 446 (1)
1	Department of Conservation Cornell University Ithaca, New York Attn: Dr. J. C. Ayers

DISTRIBUTION LIST

1	Commanding General Research and Development Division Department of the Air Force Washington 25, D. C.
1	Commanding General Research and Development Division Department of the Army Washington 25, D. C.
1	The Oceanographic Institute Florida State University Tallahassee, Florida
1	Director Lamont Geological Observatory Torrey Cliff Palisades, New York
1	Director Narragansett Marine Laboratory University of Rhode Island Kingston, Rhode Island
1	Director National Institute of Oceanography Wormley Near Godalming Surrey, England
1	National Research Council 2101 Constitution Avenue Washington 25, D. C. Attn: Committee on Undersea Warfare
1	Commanding Officer Naval Ordnance Laboratory White Oak Silver Spring 19, Maryland
6	Director Naval Research Laboratory Washington 25, D. C. Attn: Technical Information Officer
1	Dr. F. Møller Norwegian Defense Research Institute Akershus Oslo, Norway
1	Office of Naval Research Branch Office 1030 East Green Street Pasadena 1, California

	Unicago II, IIIInois
1	Office of Naval Research Branch Office 150 Causeway Street Boston 14, Massachusetts
1	Office of Naval Research Branch Office 346 Broadway New York 13, New York
3	Officer-in-Charge Office of Naval Research London Branch Office Navy Number 100 Fleet Post Office New York, New York
1	Office of Technical Services Department of Commerce Washington 25, D. C.
1	Pacific Oceanographic Group c/o Pacific Biological Station Nanaimo British Columbia, Canada
1	Dr. Willard J. Pierson New York University New York 53, New York
1	Department of Zoology Rutgers University New Brunswick, New Jersey Attn: Dr. H. H. Haskin
2	Director Scripps Institution of Oceanography La Jolla, California
1	Head Department of Oceanography Texas A & M College Station, Texas
1	Institute of Oceanography University of British Columbia Vancouver, Canada

1	Department of Engineering University of California Berkeley, California
1	Director Hawaii Marine Laboratory University of Hawaii Honolulu, T. H.
1	Director Marine Laboratory University of Miami Coral Gables 34, Florida
1	Head Department of Oceanography University of Washington Seattle 5, Washington
1	U. S. Army Beach Erosion Board 5201 Little Falls Road, N. W. Washington 16, D. C.
1	Director U. S. Coast and Geodetic Survey Department of Commerce Washington 25, D. C.
1	Commandant (OFU) U. S. Coast Guard Washington 25, D. C.
1	U. S. Fish and Wildlife Service 450 B Jordan Hall Stanford University Stanford, California
1	U. S. Fish and Wildlife Service Fort Crockett Galveston, Texas
1	U. S. Fish and Wildlife Service P. O. Box 3830 Honolulu, T. H.
1	U. S. Fish and Wildlife Service Woods Hole Massachusetts
2	Director U. S. Fish and Wildlife Service Department of the Interior Washington 25, D. C. Attn: Dr. L. A. Walford

1	Project Arowa U. S. Naval Air Station, Bldg. R-48 Norfolk, Virginia
1	Department of Aerology U. S. Naval Post Graduate School Monterey, California
2	Director U. S. Navy Electronics Laboratory San Diego 52, California Attn: Code 2240 Code 2242
8	Hydrographer U. S. Navy Hydrographic Office Washington 25, D. C. Attn: Division of Oceanography
1	Bingham Oceanographic Foundation Yale University New Haven, Connecticut

Copies	Addressees
1	Director U. S. Geological Survey Department of the Interior Washington 25, D. C.
1	Scripps Institution of Oceanography University of California La Jolla, California Attn: Dr. F. B Phleger, Jr.
1	Geological Society of America 419 West 117th Street New York 27, New York Attn: Dr. Aldrich
1	National Research Council 2101 Constitution Avenue Washington 25, D. C. Attn: Library
1	American Geophysical Union 1530 P Street, N. W. Washington 25, D. C.
1	Mr. David C. Nutt Dartmouth College Hanover, New Hampshire
1	Cushman Foundation for Foraminiferal Research Room 304 U. S. National Museum Washington 25, D. C.
1	Arctic Institute of North America c/o New York Academy of Sciences 2 East 63rd Street New York 21, New York

Armed Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTTBUILDING DAYTON 2 OHLO

CONFIDENTIAL